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Abstract— Product recommendation systems have become an 

essential component of modern digital platforms, enhancing user 

engagement by delivering personalized suggestions. This paper 

explores a vector space-based approach to product 

recommendation by utilizing Singular Value Decomposition (SVD) 

and Cosine Similarity. Users and items are represented as vectors 

in a reduced-dimensional space derived from the user-item 

interaction matrix. Through SVD, the matrix is decomposed to 

uncover latent features, simplifying complex relationships while 

maintaining critical patterns. Cosine Similarity measures the 

alignment between user preferences and item attributes, enabling 

precise and efficient recommendations. This methodology 

demonstrates its potential for large-scale applications, such as e-

commerce and content platforms, by balancing computational 

efficiency and recommendation accuracy. 

 

Keywords—Cosine Similarity, product recommendation, 

Singular Value Decomposition, vector space model. 

 

 

I.   INTRODUCTION 

In today’s digital age, businesses depend heavily on their 

ability to keep customers engaged. The more engaged a 

customer is, the more likely they are to use a product or service, 

leading to increased revenue. Engagement can come from 

various activities like browsing, purchasing, or subscribing. 

When businesses offer products or services that align with 

customer preferences, it helps build trust and encourages repeat 

interactions. This is why companies work hard to understand 

their customers and create experiences that keep them coming 

back. 

One way to improve customer experience is by introducing 

recommendation systems. These systems suggest items, such as 

products, services, or content, that users are likely to enjoy based 

on their preferences or past actions. Recommendation systems 

are widely used in many industries, from online shopping to 

entertainment. For example, online stores can recommend 

products similar to those a user has browsed, and streaming 

platforms can suggest new movies or music based on viewing or 

listening habits. These systems not only improve user 

satisfaction but also help businesses increase sales and 

engagement. 

This paper focuses on building a recommendation system 

using vector space modeling, a mathematical approach to 

represent user and item interactions. The method involves 

Singular Value Decomposition (SVD), which simplifies large 

datasets by reducing dimensions, and Cosine Similarity, which 

measures how closely related items are to user preferences. By 

applying these techniques, we can create a system that 

efficiently suggests relevant items to users. 

 

 
Fig 1.1 SVD in Recommendation System 

(Source: https://yeunun-choo.medium.com/singular-value-

decomposition-in-a-movie-recommender-system-

e3565ed42066) 

 

The proposed system offers an effective solution for handling 

large datasets and delivering accurate recommendations. It can 

be applied to various platforms, helping businesses create more 

personalized experiences for their users and improve overall 

engagement. 

 

II.  THEORETICAL BASIS 

A. Matrix 

    Matrix is a rectangular array of numbers arranged in rows 

and columns. Matrices are an essential data representation 

widely used in the field of computer science, including graph 

representation using matrices, digital image representation, 

kernel matrices in deep learning methods, and matrix 

representation for systems of linear equations. 

Let: 

𝐴 = [𝑎𝑖𝑗], 𝐵 = [𝑏𝑖𝑗] 

Then: 

The sum of two matrices 𝐶𝑚 × 𝑛 = 𝐴𝑚 × 𝑛 + 𝐵𝑚 × 𝑛 is defined 

as follows: 

𝐶 = 𝐴 +  𝐵 = [𝑐𝑖𝑗], 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗, for 𝑖 = 1, . . , 𝑚; 𝑗 = 1, . . , 𝑛 

 

The difference of two matrices 𝐶𝑚 × 𝑛 = 𝐴𝑚 × 𝑛 − 𝐵𝑚 × 𝑛 is 

defined as follows: 

𝐶 = 𝐴 −  𝐵 = [𝑐𝑖𝑗], 𝑐𝑖𝑗 = 𝑎𝑖𝑗 − 𝑏𝑖𝑗, for 𝑖 = 1, . . , 𝑚; 𝑗 = 1, . . , 𝑛 
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The sum of two matrices 𝐶𝑚 × 𝑛 = 𝐴𝑚 × 𝑛  ×  𝐵𝑚 × 𝑛 is defined 

as follows: 

𝐶 = 𝐴 ×  𝐵 = [𝑐𝑖𝑗], 𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗 

Condition: matrix multiplication is only defined when the 

number of columns in A equals the number of rows in B. 

 

    The transpose of a matrix 𝐴𝑚 × 𝑛 is a new matrix 𝐴𝑛×𝑚
𝑇  

obtained by flipping the matrix over its diagonal. In the 

transpose, the rows of the original matrix become the columns, 

and the columns become the rows. 

𝐴𝑇 = [𝑎𝑗𝑖], for 𝑖 = 1,2, . . , 𝑚; 𝑗 = 1,2, . . , 𝑛 

 

    The determinant is a scalar value that can be computed from 

the elements of a square matrix. It provides important 

information about the matrix, such as whether it is invertible. 

For a matrix 𝐴 = [
𝑎 𝑏
𝑐 𝑑

], the determinant is: 

det(𝐴) = 𝑎𝑑 − 𝑏𝑐 

 

For a 3 × 3 matrix : 

𝐴 =  [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

The determinant is calculated as: 

det(𝐴) = 𝑎11𝑀11 − 𝑎12𝑀12 + 𝑎12𝑀13 

Where 𝑀𝑖𝑗 is the determinant of the 2 × 2 minor matrix obtained 

by removing the 𝑖-th row and 𝑗-th column. 

 

For larger matrices, the determinant is calculated using 

expansion by minors recursively. 

Formula for 𝑛 × 𝑛: 

det(𝐴) = ∑(−1)1+𝑗𝑎1𝑗𝑀1𝑗

𝑛

𝑗=1

 

Where 𝑀1𝑗 is the determinant of the (𝑛 − 1) × (𝑛 − 1) minor 

matrix obtained by removing the first row and 𝑗-th column. 

 

B. Linear System of Equations 

    A system is considered linear if the highest power of its 

variables is 1. A system of linear equations with 𝑚 equations 

and 𝑛 variables (𝑥1, 𝑥2, … , 𝑥𝑛) is represented as: 

 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

⋮ 
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 

 

The system can be expressed in matrix notation as: 

 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] = [

𝑏1

𝑏2

⋮
𝑏𝑚

] 

 

    To solve a system of linear equations, Elementary Row 

Operations (ERO) are applied to an augmented matrix until it is 

transformed into either Row Echelon Form (REF) or Reduced 

Row Echelon Form (RREF). There are three types of elementary 

row operations: multiplying a row by a nonzero constant, 

swapping two rows, and adding or subtracting a multiple of one 

row from another. These operations systematically simplify the 

matrix, making it easier to solve the system. 

 

[

1 ∗ ∗ ⋯ ∗
0 1 ∗ ⋯ ∗
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1

] 

 

    In the Gaussian Elimination Method, the first step is to 

express the system of equations in augmented matrix form. The 

augmented matrix is then transformed into row echelon form by 

applying EROs. In this form, the matrix has a triangular 

structure with zeros below the diagonal. Once in row echelon 

form, the system is solved using back substitution, starting with 

the last row and working upward to find the values of all 

variables. 

 

[

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1

] 

 

    The Gauss-Jordan Elimination Method goes a step further by 

transforming the augmented matrix into reduced row echelon 

form, where each pivot is equal to 1, and all other entries in the 

pivot column are zeros. In this form, the solution can be directly 

read from the matrix without requiring back substitution. Gauss-

Jordan Elimination is particularly useful when finding the 

inverse of a matrix or obtaining exact solutions. 

 

C. Cosine Similarity 

    Cosine similarity measures the similarity between two vectors 

𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) and 𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑛). It calculates the 

cosine of the angle 𝜃 between the vectors in a multi-dimensional 

space. This similarity metric is derived from the dot product of 

the two vectors and their magnitudes. The formula for cosine 

similarity is: 

𝑠𝑖𝑚(𝑄, 𝐷) = cos 𝜃 =
𝑄⋅𝐷

||𝑄||||𝐷||
 

 

The dot product Q⋅D is defined as: 

𝑄 ⋅ 𝐷 =  𝑞1𝑑1 + 𝑞2𝑑2 + ⋯+ 𝑞𝑛𝑑𝑛 = ∑𝑞𝑖𝑑𝑖

𝑛

𝑖=1

 

 
Fig 2.1 Cosine Similarity in Graph Similarity 

(Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometr

i/2023-2024/Algeo-14-Aplikasi-dot-product-pada-IR-

2023.pdf) 
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https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-14-Aplikasi-dot-product-pada-IR-2023.pdf
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If cos 𝜃 = 1, it means the angle 𝜃 = 0∘, indicating that the 

vectors 𝑄 and 𝐷 are perfectly aligned, or pointing in the same 

direction. In the context of information retrieval, this signifies 

that the document 𝐷 is an exact match for the query 𝑄. Larger 

cosine values, closer to 1, indicate a higher degree of similarity 

between the vectors, suggesting that the document is more 

relevant to the query. Conversely, if cos 𝜃 = 0, the vectors 𝑄 

and 𝐷 are orthogonal, meaning there is no similarity between 

them. Finally, if cos 𝜃 = −1, it implies that the vectors point in 

opposite directions, indicating complete dissimilarity. 

 

C. Eigen Values 

    If 𝐴 is an 𝑛 × 𝑛 matrix, a nonzero vector 𝑥 in ℝ𝑛 is called an 

eigenvector of 𝐴 if the matrix-vector multiplication 𝐴𝑥 results 

in scalar multiple of 𝑥. This relationship is written as: 

𝐴𝑥 =  𝜆𝑥 

Here, 𝜆 is called eigenvalue corresponding to the eigenvector 𝑥. 

The operation 𝐴𝑥 =  𝜆𝑥 causes the vector 𝑥 to shrink or stretch 

by a factor of 𝜆, with the same direction if 𝜆 is positive and the 

opposite direction if 𝜆 is negative. 

 

 
Fig 2.2 Effect of Eigenvalues (𝜆) on the Scaling and Direction 

of Eigenvectors 

(Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometr

i/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-

Bagian1-2023.pdf) 

  

To calculate eigenvalues and eigenvectors of a matrix 𝐴, start 

with the equation 𝐴𝑥 =  𝜆𝑥, where 𝑥 is a nonzero vector (the 

eigenvector) and 𝜆 is the eigenvalue. This equation can be 

rewritten as (𝜆𝐼 − 𝐴)𝑥 = 0, where 𝐼 is the identity matrix of the 

same size as 𝐴. For this equation to have a non-trivial solution 

(𝑥 ≠ 0) , the determinant of (𝜆𝐼 − 𝐴) must be zero. This leads 

to the characteristic equation, 𝑑𝑒𝑡(𝜆𝐼 − 𝐴)𝑥 = 0, which is used 

to find the eigenvalues. The roots of this polynomial equation 

are the eigenvalues of 𝐴. Once the eigenvalues are determined, 

each eigenvalue 𝜆 can be substituted back into the equation 

(𝜆𝐼 − 𝐴)𝑥 = 0 to solve for the corresponding eigenvector 𝑥. 

 

D. Singular Value Decomposition (SVD) 

    For non-square matrices, specifically 𝑚 × 𝑛 matrices, the 

main diagonal of the matrix is defined as the line starting from 

the top-left corner and extending downward as far as possible 

within the matrix. 

 
Fig 2.3 Main Diagonal of Non-Square Matrices 

(Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometr

i/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-

2023.pdf) 

 

    Let 𝐴 be a 𝑚 × 𝑛 matrix. If 𝜆1, 𝜆2, … , 𝜆𝑛 are the eigenvalues 

of 𝐴𝑇𝐴, then: 

𝜎1 = √𝜆1, 𝜎2 = √𝜆2, …, 𝜎𝑛 = √𝜆𝑛 

These values, 𝜎1, 𝜎2, … , 𝜎𝑛, are called the singular values of the 

matrix A. 

    If 𝐴 is an 𝑚 × 𝑛 matrix of rank 𝑘, then 𝐴 can be factored as: 

𝐴 = 𝑈𝛴𝑉𝑇 = [𝑢1 𝑢2 ⋯ 𝑢𝑘| 𝑢𝑘+1 ⋯ 𝑢𝑚] 

[
 
 
 
 
𝜎1

0
⋮
0
 

0
𝜎2

⋮
0

0(𝑚−𝑘)×𝑘

⋯
⋯
⋱
⋯
 

0
0
⋮
𝜎𝑘

 

|

 
0𝑘×(𝑛−𝑘)

 
0(𝑚−𝑘)×(𝑛−𝑘)

]
 
 
 
 

[
 
 
 
 
 
 
 

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑘

𝑇

𝑣𝑘+1
𝑇

⋮
𝑣𝑛

𝑇 ]
 
 
 
 
 
 
 

 

 

In which 𝑈, 𝛴, and 𝑉 have sizes 𝑚 × 𝑚, 𝑚 × 𝑛, and 𝑛 × 𝑛, 
respectively, and in which: 

(a) 𝑉 =  [𝑣1 𝑣2 ⋯ 𝑣𝑛] orthogonally diagonalizes 𝐴𝑇𝐴. 

(b) The nonzero diagonal entries of 𝛴 are 𝜎1 = √𝜆1, 𝜎2 =

√𝜆2, …, 𝜎𝑘 = √𝜆𝑘, where 𝜆1, 𝜆2, …, 𝜆𝑘 are the nonzero 

eigenvalues of 𝐴𝑇𝐴 corresponding to the column vectors 

of 𝑉. 

(c) The column vectors of 𝑉 are ordered so that 𝜎1 ≥ 𝜎2 ≥
⋯ ≥ 𝜎𝑘 > 0. 

(d) 𝑢𝑖 = 𝐴𝑣𝑖
‖𝐴𝑣𝑖‖

= 1

𝜎𝑖
𝐴𝑣𝑖 (𝑖 = 1,2, … , 𝑘). 

(e) {𝑢1, 𝑢2, … , 𝑢𝑘} is an orthonormal basis for col(A). 

(f) {𝑢1, 𝑢2, … , 𝑢𝑘, 𝑢𝑘+1, … , 𝑢𝑚} is an extension of 

{𝑢1, 𝑢2, … , 𝑢𝑘} to an ortho-normal basis for 𝑅𝑚. 

 

III.   APPROACH AND METHODOLOGY 

    The recommendation system implemented in this study is 

based on the combination of Singular Value Decomposition 

(SVD) and Cosine Similarity to personalize recommendations 

for users. The primary goal is to uncover latent patterns in user-

item interactions and provide suggestions that align with user 

preferences. The methodology leverages matrix factorization 

and similarity measurement techniques, supported by evaluation 

metrics to assess performance. 

    To begin, the user-item interaction matrix serves as the 

foundation. This matrix represents interactions between users 

(rows) and items (columns), such as ratings, clicks, or 

purchases. 

𝑈𝑠𝑒𝑟 − 𝐼𝑡𝑒𝑚 𝑀𝑎𝑡𝑟𝑖𝑥 =

[
 
 
 
 
 

5 3 0 1 ⋯ 𝑎1𝑛

4 0 0 1 ⋯ 𝑎2𝑛

1 1 0 5 ⋯ 𝑎3𝑛

0 0 4 4 ⋯ 𝑎4𝑛

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 𝑎𝑚4 ⋯ 𝑎𝑚𝑛]

 
 
 
 
 

 

 

Missing values (e.g., 0s) indicate that no interaction has 

occurred, and these values need to be inferred during the 

recommendation process. The SVD technique decomposes the 

user-item matrix into three components: 𝑈, 𝛴, and 𝑉𝑇. 𝑈 

captures user preferences, 𝛴 holds singular values representing 

the importance of latent features, and 𝑉𝑇 represents item 

attributes. This decomposition reduces the dimensionality of the 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
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data, retaining only the most significant features, which 

simplifies computations and removes noise. 

    Once the decomposition is complete, users and items are 

represented as vectors in the reduced-dimensional space. Cosine 

Similarity is then applied to measure the closeness between user 

and item vectors. If a user’s preferences are like another user, 

the system can recommend items that the similar user has 

interacted with. If items are similar, the system can recommend 

similar items to what a user has already interacted with. 

 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑢⋅𝑣

||𝑢||||𝑣||
 

Where 𝑢 and 𝑣 represent the vectors for a user and an item, 

respectively. 

 

    Additionally, Mean Squared Error (MSE) assesses the 

accuracy of predicted ratings compared to actual ratings: 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 

where 𝑦𝑖 is the actual rating, and  𝑦�̂� is the predicted rating. These 

metrics collectively provide a comprehensive understanding of 

the system’s performance, balancing accuracy and relevance. 

 

IV.   RECOMMENDATION SYSTEM 

First, create a sample user-item matrix to represent user-item 

interactions, where each row corresponds to a user, and each 

column represents an item. The values in the matrix denote the 

ratings given by users to items, with a value of zero indicating 

that the user has not rated the item. The purpose of this sample 

matrix is to provide an example dataset for testing and 

visualizing the recommendation system. In real-world 

applications, this matrix would be replaced by actual user-

product interaction data from the respective domain. 

 

 
Fig 4.1 Implementation of Sample User-Item Matrix 

 

Then, we process the matrix using Singular Value 

Decomposition (SVD) via eigenvalue decomposition to reduce 

the dimensionality of the matrix while preserving the most 

significant patterns of user-item interactions. By focusing on the 

most important singular values and their corresponding singular 

vectors, we can approximate the original matrix while filtering 

out noise or less relevant details. 

 
Fig 4.2 Implementation of SVD Using Eigenvalue 

Decomposition 
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Next, we calculate the predicted ratings to estimate which 

products are most suitable for each user. Simultaneously, we 

compute cosine similarity to measure the similarity between 

users and items, allowing us to identify patterns in user behavior 

and item relationships. Finally, we combine all these factors—

predicted ratings, user similarity, and item similarity—into a 

unified recommendation model to generate the final product 

recommendations specifically for each user. 

 

 
Fig 4.3 Implementation of Predicting the Ratings 

 

 
Fig 4.4 Implementation of Cosine Similarity 

 

 
Fig 4.5 Implementation of Combining All Recommendation 

Factors 

 

 
Fig 4.6 Implementation of Main Program 
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Fig 4.7 Result of SVD Calculation 

  

 
Fig 4.8 Heatmaps, Recommendation Results, and MSE 

 

The heatmaps above display the similarity matrices calculated 

using cosine similarity for both users and items in the 

recommendation system. The User Similarity Matrix (left) 

highlights how closely each user relates to others based on their 

interaction with items. Values closer to 1 (red) indicate higher 

similarity, signifying that the users have similar preferences, 

while values closer to 0 or negative (blue) indicate low or no 

similarity. Similarly, the Item Similarity Matrix (right) 

illustrates how closely items are related to each other based on 

users’ preferences and interactions. 

These similarity measures were then used to enhance the 

prediction of recommendations by identifying related users and 

items to infer ratings. In the final recommendation results, the 

system calculated the predicted ratings for the unrated items 

using Singular Value Decomposition (SVD) and combined it 

with similarity metrics to provide recommendations. For 

instance, the system identified Item 11, Item 9, and Item 2 as the 

top recommendations for User 1 with predicted ratings of 3.10, 

3.05, and 2.96, respectively. This outcome results from 

considering not only the reconstructed rating matrix but also 

leveraging the relationships between users and items to provide 

a balanced and accurate recommendation. 

Because the Mean Squared Error (MSE) is small, it 

demonstrates that the method of product recommendation using 

Singular Value Decomposition (SVD) combined with cosine 

similarity is one of the effective ways to predict user preferences 

accurately. A low MSE indicates that the predicted ratings are 

very close to the actual ratings, which validates the robustness 

and reliability of this approach. 

 

V.   CONCLUSION 

Product Recommendation System using Singular Value 

Decomposition (SVD) and cosine similarity is one of many 

approaches used in modern recommendation systems to provide 

accurate and personalized suggestions. Compared to traditional 

methods, this combination offers enhanced precision by 

decomposing the user-item interaction matrix into its latent 

factors, which represent hidden patterns in user preferences and 

item characteristics. The use of cosine similarity further 

complements this by measuring the relationships between users 

or items, allowing for more relevant recommendations. 

While there are more advanced methods such as deep learning 

models or hybrid filtering systems that could provide additional 

accuracy, SVD with cosine similarity is sufficient for small to 

medium-scale applications due to its simplicity and 

computational efficiency. This approach effectively balances 

complexity and accuracy, making it a reliable solution for 

personalized recommendations in various industries, such as e-

commerce, entertainment, and education platforms. 

 

VI.   APPENDIX 

The source code used to implement the product 

recommendation system using SVD and cosine similarity: 

https://github.com/farrelathalla/Product-Recommendation-

with-SVD-and-Cosine-Sim.git 
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